New Modeling for Generation of Normal and Abnormal Heart Rate Variability Signals

نویسنده

  • Naser Safdarian
چکیده

This research is performed based on the modeling of biological signals. We can produce Heart Rate (HR) and Heart Rate Variability (HRV) signals synthetically using the mathematical relationships which are used as input for the Integral Pulse Frequency Modulation (IPFM) model. Previous researches were proposed same methods such as one model of ECG signal synthetically based on RBF neural network, a model based on IPFM with random threshold, method was based on the estimation of produced signals which are dependent on autonomic nervous system using IPFM model with fixed threshold, a new method based on the theory of vector space that based on time-varying uses of IPMF model (TVTIPMF) and special functions, and two different methods for producing HRV signals with controlled characteristics and structure of time-frequency (TF) for using nonstationary HRV analysis. In this paper, several chaotic maps such as Logistic Map, Henon Map, Lorenz and Tent Map have been used. Also, effects of sympathetic and parasympathetic nervous system and an internal input to the SA node and their effects in HRV signals were evaluated. In the proposed method, output amount of integrator in IPFM model was compared with chaotic threshold level. Then, final output of IPFM model was characterized as the HR and HRV signal. So, from HR and HRV signals obtaining from this model, linear features such as Mean, Median, Variance, Standard Deviation, Maximum Range, Minimum Range, Mode, Amplitude Range and frequency spectrum, and non-linear features such as Lyapunov Exponent, Shanon Entropy, log Entropy, Threshold Entropy, sure Entropy and mode Entropy were extracted from artificial HRV and compared them with characteristics as extracted from natural HRV signal. Also, in this paper two patients that called high sympathetic Balance and Cardiovascular Autonomy Neuropathy (CAN) which is detected and evaluated by HRV signals were simulated. These signals by changing the values of the some coefficients of the normal simulated signal and with extracted frequency feature from these signals were simulated. For final generation of these abnormal signals, frequency features such as energy of low frequency band (EL), energy of high frequency band (HL), ratio of energy in low frequency band to the energy in high frequency band (EL/EH), ratio of energy in low frequency band to the energy in all frequency band (EL/ET) and ratio of energy in high frequency band to the energy in all frequency band (EH/ET) from abnormal signals were extracted and com-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Heart Rate Variability During Meditative and Non-Meditative State Using Analysis of Variance

In this paper the main objective is to quantify and compare the instantaneous value of heart rate for normal breathing patterns during Meditation and Non Meditation conditions. This paper involves Analysis of Variance (ANOVA) technique for the analysis of the heart rate variability patterns during the meditative and non meditative states. The analysis is divided into three stages i.e. data acqu...

متن کامل

Analysis of Heart Rate Variability During Meditative and Non-Meditative State Using Analysis of Variance

In this paper the main objective is to quantify and compare the instantaneous value of heart rate for normal breathing patterns during Meditation and Non Meditation conditions. This paper involves Analysis of Variance (ANOVA) technique for the analysis of the heart rate variability patterns during the meditative and non meditative states. The analysis is divided into three stages i.e. data acqu...

متن کامل

Macroscopic Visualization of the Heart Electrical Activity Via an Algebraic Computer Model

In this study, a mathematical model is developed based on algebraic equations which is capable of generating artificially normal events of electrocardiogram (ECG) signals such as P-wave, QRS complex, and T-wave. This model can also be implemented for the simulation of abnormal phenomena of electrocardiographic signals such as ST-segment episodes (i.e. depression, elevation, and sloped ascending...

متن کامل

A New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal

The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...

متن کامل

A New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal

The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...

متن کامل

A New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks

Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014